top of page

Support Group

Public·277 members
Willie Burgess
Willie Burgess

Crack Certus Ldl Trial 17 HOT!

Most people are unaware that they carry chemical compounds in their bodies. Chemical 'Body Burden' refers to the accumulation of synthetic chemicals found in pesticides, cosmetics, industrial solvents, heavy metals, etc in our bodies. At any given time, hundreds of chemicals can be found in blood, urine, breast milk and even umbilical cord blood. Many of these chemicals enter our bodies through the foods we eat or drink, products we put on our skin and air we breathe. Before birth, people normally carry a body burden inherited from their mothers. Scientists believe the typical human being hosts close to 500 chemicals in various compartments in the body, mostly in fatty tissue. Many chemicals are broken down in our bodies and their metabolites are eliminated, but others linger in our bodies for a lifetime and can increase our risk for certain diseases such as cancer and Parkinson's disease.

crack certus ldl trial 17

  • Pesticides as endocrine disruptors: programming for obesity and diabetesExposure to pesticides has been associated with obesity and diabetes in humans and experimental models mainly due to endocrine disruptor effects. First contact with environmental pesticides occurs during critical phases of life, such as gestation and lactation, which can lead to damage in central and peripheral tissues and subsequently programming disorders early and later in life. We reviewed epidemiological and experimental studies that associated pesticide exposure during gestation and lactation with programming obesity and diabetes in progeny. Maternal exposure to organochlorine, organophosphate and neonicotinoids, which represent important pesticide groups, is related to reproductive and behavioral dysfunctions in offspring; however, few studies have focused on glucose metabolism and obesity as outcomes. We provide an update regarding the use and metabolic impact of early pesticide exposure. Considering their bioaccumulation in soil, water, and food and through the food chain, pesticides should be considered a great risk factor for several diseases. Thus, it is urgent to reformulate regulatory actions to reduce the impact of pesticides on the health of future generations.[Miranda, R.A., Silva, B.S., de Moura, E.G. and Lisboa, P.C., 2022. Endocrine, pp.1-11.]

  • The pesticide chlorpyrifos promotes obesity by inhibiting diet-induced thermogenesis in brown adipose tissueObesity results from a caloric imbalance between energy intake, absorption and expenditure. In both rodents and humans, diet-induced thermogenesis contributes to energy expenditure and involves the activation of brown adipose tissue (BAT). We hypothesize that environmental toxicants commonly used as food additives or pesticides might reduce BAT thermogenesis through suppression of uncoupling protein 1 (UCP1) and this may contribute to the development of obesity. Using a step-wise screening approach, we discover that the organophosphate insecticide chlorpyrifos suppresses UCP1 and mitochondrial respiration in BAT at concentrations as low as 1 pM. In mice housed at thermoneutrality and fed a high-fat diet, chlorpyrifos impairs BAT mitochondrial function and diet-induced thermogenesis, promoting greater obesity, non-alcoholic fatty liver disease (NAFLD) and insulin resistance. This is associated with reductions in cAMP; activation of p38MAPK and AMPK; protein kinases critical for maintaining UCP1 and mitophagy, respectively in BAT. These data indicate that the commonly used pesticide chlorpyrifos, suppresses diet-induced thermogenesis and the activation of BAT, suggesting its use may contribute to the obesity epidemic.[Wang, B., Tsakiridis, E.E., Zhang, S., Llanos, A., Desjardins, E.M., Yabut, J.M., Green, A.E., Day, E.A., Smith, B.K., Lally, J.S. and Wu, J. Nature communications, 12(1), pp.1-12.]

  • Assessment of Glyphosate Induced Epigenetic Transgenerational Inheritance of Pathologies and Sperm Epimutations: Generational ToxicologyAncestral environmental exposures to a variety of factors and toxicants have been shown to promote the epigenetic transgenerational inheritance of adult onset disease. One of the most widely used agricultural pesticides worldwide is the herbicide glyphosate (N-(phosphonomethyl)glycine), commonly known as Roundup. There are an increasing number of conflicting reports regarding the direct exposure toxicity (risk) of glyphosate, but no rigorous investigations on the generational actions. The current study using a transient exposure of gestating F0 generation female rats found negligible impacts of glyphosate on the directly exposed F0 generation, or F1 generation offspring pathology. In contrast, dramatic increases in pathologies in the F2 generation grand-offspring, and F3 transgenerational great-grand-offspring were observed. The transgenerational pathologies observed include prostate disease, obesity, kidney disease, ovarian disease, and parturition (birth) abnormalities. Epigenetic analysis of the F1, F2 and F3 generation sperm identified differential DNA methylation regions (DMRs). A number of DMR associated genes were identified and previously shown to be involved in pathologies. Therefore, we propose glyphosate can induce the transgenerational inheritance of disease and germline (e.g. sperm) epimutations. Observations suggest the generational toxicology of glyphosate needs to be considered in the disease etiology of future generations.[Kubsad, D., Nilsson, E.E., King, S.E., Sadler-Riggleman, I., Beck, D. and Skinner, M.K., 2019. Scientific reports, 9(1), pp.1-17.]

  • Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats.Chlorpyrifos is a commonly-used pesticide which was reported to interfere with hormone signaling and metabolism, however, little is known about its effect on gut microbiota. In this study, adult male rats fed a normal (NF) or high fat (HF) diet were exposed to 0.3 or 3.0 mg chlorpyrifos/kg bodyweight/day or vehicle alone for 9 weeks. Effects on bodyweight, serum levels of glucose, lipid, cytokines, and gut microbiome community structure were measured. The effects of chlorpyrifos on metabolism were dose- and diet-dependent, with NF-fed rats administered the low dose showing the largest metabolic changes. NF-fed rats exposed to chlorpyrifos exhibited a pro-obesity phenotype compared with their controls, whereas there was no difference in pro-obesity phenotype between HF-fed groups. Chlorpyrifos exposure significantly reduced serum insulin, C-peptide, and amylin concentrations in NF- and HF-fed rats, leaving serum glucose and lipid profiles unaffected. Chlorpyrifos exposure also significantly altered gut microbiota composition, including the abundance of opportunistic pathogens, short chain fatty acid-producing bacteria and other bacteria previously associated with obese and diabetic phenotypes. The abundance of bacteria associated with neurotoxicity and islet injury was also significantly increased by chlorpyrifos. Our results suggest risk assessments for chlorpyrifos exposure should consider other effects in addition to neurotoxicity.[Fang B, Li JW, Zhang M, Ren FZ, Pang GF. 2018. Food Chem Toxicol. 111:144-152]

  • Increased levels of persistent organic pollutants in serum one year after a great weight loss in humans: Are the levels exceeding health based guideline values?With the growing prevalence of obesity, an increased number of bariatric surgeries are being performed. Lipophilic persistent organic pollutants (POPs) are stored in adipose tissue, and an increased release of lipophilic POPs into the blood circulation may occur following rapid weight loss such as after bariatric surgery.To evaluate and compare POP levels in serum before and after bariatric surgery, and to assess if the POP levels exceeded health based guideline values, with particular focus on women of childbearing age (WCBA). Serum samples from 63 patients before and one year after bariatric surgery were analysed for organochlorine pesticides (OCPs); polychlorinated biphenyls (PCBs); and brominated flame retardants (BFRs).Mean weight loss one year after surgery was 32.1kg. The levels of all the analysed POPs in serum increased during the study period. Median levels of dichlorodiphenyldichloroethylene (p,p'-DDE), hexachlorobenzen (HCB) and PCB-153 increased from 90.2ng/g lipid weight (lw) to 158.5ng/glw, from 21.1ng/glw to 36.4ng/glw and from 48.7ng/glw to 71.5ng/glw, respectively. The highest percentage increase was observed for PCB -138, with 83.1%. BFRs were detected in low sample numbers and at low levels. Guideline values for ΣPCB6 in serum were exceeded for 5% of the participants. Weight loss after bariatric surgery resulted in increases of POPs levels in serum between 46.7%-83.1%. Guideline values for ΣPCB6 in serum were exceeded for 5% of the participants. For WCBA, the possible transfer of comparable levels to infants warrants further attention.[Jansen A, Polder A, Müller MHB, et al. 2018. Sci Total Environ. 622-623:1317-1326. ]

Association between organic food consumption and metabolic syndrome: cross-sectional results from the NutriNet-Santé study.Metabolic syndrome (MetS), a multicomponent condition, is a cardiovascular disease predictor. Although exposure to agricultural pesticides has been suggested as a potential contributor to the rising rates of obesity, type 2 diabetes, and other features of metabolic disorders, no studies have focused on the association between consumption of organic food (produced without synthetic pesticides) and MetS. We aimed to investigate the cross-sectional association between organic food consumption and MetS in French adults to determine whether it would be worth conducting further studies, particularly large prospective and randomised trials.A total of 8174 participants from the NutriNet-Santé study who attended a clinical visit and completed an organic food frequen


Welcome to the group! You can connect with other members, ge...


bottom of page